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Abstract
Recently, numerous studies have been conducted on flexible skin-like membranes for the cost
effective monitoring of large-scale structures. The authors have proposed a large-area electronic
consisting of a soft elastomeric capacitor (SEC) that transduces a structure’s strain into a
measurable change in capacitance. Arranged in a network configuration, SECs deployed onto the
surface of a structure could be used to reconstruct strain maps. Several regression methods have
been recently developed with the purpose of reconstructing such maps, but all these algorithms
assumed that each SEC-measured strain located at its geometric center. This assumption may not
be realistic since an SEC measures the average strain value of the whole area covered by the
sensor. One solution is to reduce the size of each SEC, but this would also increase the number
of required sensors needed to cover the large-scale structure, therefore increasing the need for the
power and data acquisition capabilities. Instead, this study proposes an algorithm that accounts
for the sensor’s strain averaging feature by adjusting the strain measurements and constructing a
full-field strain map using the kriging interpolation method. The proposed algorithm fuses the
geometry of an SEC sensor into the strain map reconstruction in order to adaptively adjust the
average kriging-estimated strain of the area monitored by the sensor to the signal. Results show
that by considering the sensor geometry, in addition to the sensor signal and location, the
proposed strain map adjustment algorithm is capable of producing more accurate full-field strain
maps than the traditional spatial interpolation method that considered only signal and location.

Supplementary material for this article is available online
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1. Introduction

Recent advances in sensor technologies have reduced the
costs associated with the instrumentation of large-scale (or
mesoscale) structures, including civil, aerospace, and energy
structures, for structural health monitoring applications [1].
This reduction in cost enables the deployment of distributed
dense sensor networks for direct damage sensing over large

surfaces. Direct sensing is generally considered to be one of
the two categories of methods used for the detection and
localization of damage, with the other category being the
indirect methods [2]. Indirect sensing technologies (e.g.
accelerometers) and methods involve the measurement of a
structure’s global condition through an often sparse array of
sensors. However, the likelihood that a local damage will
directly affect the signal output of a sensor is low. As a
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consequence, these methods rely on sophisticated data ana-
lysis and damage detection algorithms. Indirect sensing
technologies can be sensitive to, and their application limited
by, noisy measurements, complex structures, and/or envir-
onmental variations (e.g. humidity and thermal) [3, 4]. In
contrast, direct sensing methods involve the deployment of
distributed dense sensor networks that are capable of directly
inferring damage from a change in a signal with only simple,
often called ‘threshold’ algorithms [5]. Examples of strain-
based direct damage sensing technologies include fiber-optic
sensors, vibrating wire, and resistive strain gauges (RSGs). To
provide a structure with a high probability of detection for
cracks and other strain field anomalies, a large number of
individual sensors are required [2, 6–8]. While mature tech-
nologies such as fiber-optic sensors or vibrating wires can be
spatially distributed to increase their damage detection reso-
lution, their relatively high costs (including sensors, data
acquisition (DAQ), and installation) and relative bulkiness [9]
when mounted on the surface of a structure make them less
suited for the monitoring of mesoscale structures [4, 10].

The need for spatially distributed strain sensing tech-
nologies has been recognized by multiple researchers and
addressed using various techniques. One such technique is
electrical impedance tomography (EIT) where either the
electrical conductivity, permittivity, or impedance is inferred
from the electrical measurements made on the surface of a
structure. These measurements are then used to generate a
tomographic image of the component. EIT has been used for
damage detection in structures by measuring the electrical
changes in carbon nanotube skins [11, 12], copper doped
conductive paints [13, 14], or through the component itself
[15]. While EIT is capable of producing a relatively high
spatial resolution, it requires a high contact density and
repeated measurements to solve the tomography mapping’s
inverse problem. In addition, as the analytical solution for the
inverse mapping problem is difficult (or sometimes impos-
sible) to formulate, the finite element or finite difference
method must be used to obtain an approximate solution [16].
Despite high spatial resolution capabilities, the requirements
for repeated measurements using a variety of contacts and for
solving the inverse mapping problem make the EIT technique
not well suited for every application. Another electrical
tomography technique uses a resistor mesh model to detect
and localize damage-induced strain changes in cement doped
with multi-walled carbon nanotubes [17]. However, this
model-assisted approach requires that damage be located
through the use of a searching method that updates the
resistor mesh model associated with the structure, thus adding
a relatively high computational cost to the approach [18].
Another notable method to collect spatially distributed strain
data is the use of optical measurements (e.g. cameras and
photocells) leveraging either digital image correlation [19] or
photoactive nanocomposites that generate small amounts of
light when various levels of strain are reached [20]. While
these measurement systems benefit from their being non-
contact methods, their requirement of having either a camera
or photocell set back from the structure limits their deploy-
ment in some applications.

The use of large-area electronics or sensing skins for the
condition assessment of structures is an emerging technology
enabling a broad range of sensors and their associated elec-
tronics to be integrated onto a single sheet [21, 22]. These
sensing skins allow for the easy installation of a high number
of discrete sensors over a large-scale surface. The discrete
sensors that make up a sensing skin allow for the direct
detection and localization of damage. These sensing skins are
analogous to biological skin in that they are capable of
detecting and localizing damage over a structure’s global
area. Various researchers have proposed sensing skins that are
self-contained units, with all the sensing, DAQ, power har-
vesting, and communications built onto a single flexible
sheet. Numerous examples of sensing skins, at various stages
of development, have been tested at the laboratory scale. One
example is a sensing skin that uses a plurality of traditional
RSGs and integrated circuits mounted onto a single flexible
substrate [23]. A prototype of this RSG based sensing skin
was fabricated where communications between the sensors
and integrated circuits were done through conductive and
capacitive antennas to provide a low-cost and scalable
architecture [24]. Other researchers have looked at using
polymer materials doped with carbon nanotubes to form
piezoresistive strain sensors [25–27] that could be combined
with electronics to constitute sensing skins. One such exam-
ple is a fully integrated sensing skin that combined thin-film
resistive sensors fabricated from a carbon nanotube composite
with the required electronics for on-board resistance mea-
surements [28]. Other promising approaches for the realiza-
tion of large-scale sensing skins include using a CO2 laser to
directly write RSGs onto a polyimide film to form graphitic
porous sensor arrays that could be easily customizable in
shape and size [29] and the use of strain sensors printed with
conductive ink [30].

Another sensing skin, being developed by the authors of
this paper, is based on a densely deployed network of low-
cost large-area capacitor termed the soft elastomeric capacitor
(SEC) [31]. The SEC is a robust and durable sensor [32] that
is customizable in both shape and size. One particularly
useful attribute of the SEC is its capability to measure the
additive strain of a structure (εx+εy) [31]. The individual
SEC has been characterized for both its static [33] and
dynamic [34] behaviors. The sensing skin consisting of a
network of SEC sensors has been used for the generation of
full-field uni-directional strain maps [35, 36], and for the
detection of fatigue cracks in steel bridges [37]. Additionally,
an SEC-based sensing skin has been studied for the detection
and localization of damage on a wind turbine blade, both
numerically [38] and experimentally [39].

Because the SEC is a strain transducing sensor, it follows
that a network of SECs deployed onto the surface of a
structure could be used to reconstruct strain maps. An
approximated full-field additive strain map can be recon-
structed by assuming that the measurement of each SEC is
located in the geometric center of the SEC and interpolating
the measurement points between adjacent SECs. Various
interpolation methods can be used for this task, including
radial basis functions [40], cubic splines [41], and kriging (or
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Gaussian process regression) [42]. As the number and density
of SECs deployed over a given area increases, the approxi-
mated full-field strain map will become more accurate due to
the capability of the SEC network to reproduce more complex
strain topographies. However, as with any sensing technol-
ogy, an increase in the number of sensors deployed onto a
structure necessitates increased power, DAQ capabilities, and
communication hardware. Therefore, a trade-off must be
made between the cost (economic and technical) associated
with a particular sensor density and the required strain map
resolution. To help reduce the severity of this trade-off, this
work introduces a robust algorithm that fuses the geometry
(i.e. the area) of the SEC sensor into the previously discussed
strain map interpolation method that relied solely on the
sensor signal and sensor location.

The strain map adjustment algorithm works by first
building a traditional full-field strain map using the SEC
sensor signals and locations and then interpolating the mea-
surement points between the sensors. In this work kriging is
used as the interpolation method. Next, the sensor geometry is
fused into the strain map by calculating what the signal of
each SEC should be using the kriging-estimated strain map
under the area covered by each sensor and adjusting the SEC
signal used for training the kriging model. Thereafter, the
computation iteratively adjusts the SEC signal used for
training the kriging model until the estimated signal from the
kriging-derived strain map converges to the actual signal of
the SECs. The improvement in full-field strain estimation
allows for more accurate damage and strain field anomaly
detection. In cases where uni-directional strain maps are
needed, this algorithm can be used to improve the accuracy of
the additive strain field used in the decomposition task using a
previously proposed kriging-based [35] or least squares-based
[36] algorithm. Results show that by considering the sensor
geometry, in addition to the sensor signal and location, the
proposed strain map adjustment algorithm is capable of pro-
ducing more accurate full-field strain maps with a given
number of sensors than the traditional interpolation method
that considered only the sensor signal and location.

2. Background

This section provides a brief review of the SEC sensor that
forms the basis of the SEC-based sensing skin, followed by a
brief introduction to the kriging method used in this work.

2.1. Soft elastomeric capacitor

The SEC is a highly scalable thin-film strain sensor. Figure 1
presents a square SEC with a area of 56 cm2. The sensor is a
parallel plate capacitor with its strain sensing principle
derived from the fact that a change in area (i.e., strain) of the
monitored structure will provoke a measurable change in its
capacitance. The fabrication process of the SEC is simple and
highly scalable, because it does not require any highly spe-
cialized manufacturing or processing equipment. The di-
electric of the capacitor is constituted from an SEBS block co-

polymer filled with TiO2 to increase both its durability
[32, 43] and permittivity [44]. The conductive layers painted
onto each side of the SEC sensor are fabricated by doping the
same SEBS but filled carbon black instead of TiO2. Carbon
black is used as the conductive filler as it allows for con-
ductive pathways to form within the SEBS matrix. Addi-
tionally, it absorbs both UV and visible light [45] and has
demonstrated resiliency to weathering [32]. Currently, elec-
trical connections are made to the painted conductive layers
of the SEC using copper contacts. To ensure a good con-
nection between the copper contact and SEBS-based con-
ductive paint, a thin layer of the conductive paint is added on
top of the copper contacts as denoted in figure 1. For more
details regarding the manufacturing process of the SEC sen-
sors, the interested reader is referred to [31, 34].

An electro-mechanical model that relates a change in area
of the monitored structure to a measurable change in capaci-
tance can be derived by taking the capacitance (C) of a parallel
plate capacitor, modeled as a non-lossy parallel plate capacitor:

= ( )C e e
A

h
, 1r0

where e0=8.854 pFm−1 is the vacuum permittivity, er is the
polymer’s relative permittivity, = ·A d l is the sensor area of
width d and length l (as annotated in figure 1), and h is the
thickness of the dielectric. Assuming small strains, equation (1)
can be written as a change in capacitance (ΔC):

D
=

D
+

D
-

D ( )C

C

d

d

l

l

h

h
, 2

where it can be noted that Δd/d, Δl/l, and Δh/h, can be
expressed as strain components εx, εy, and εz, respectively.
Assuming a plane stress condition, εz=−ν/(1−ν)·
(εx+εy), a relative change in capacitance ΔC can be related to
a change in the sensor’s deformation as:

l e e
D

= +( ) ( )C

C
, 3x y

where ν is the sensor material’s Poisson’s ratio taken as
ν≈0.49 [46]. Therefore, λ=1/(1−ν)≈2 represents the

Figure 1. An SEC sensor with key components, dimensions, and
axes annotated.
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gauge factor of the sensor. A key advantage of the SEC is its
capability to measure the additive strain of a structure, as shown
in equation (3).

Algorithm 1. Pseudocode for the strain map adjustment
algorithm

1: Build and run the initial kriging model.
2: Use the kriging model to calculate the estimated SEC signal.
3: Calculate the difference between the SEC signal and the kriging
model’s estimated SEC signal.

4: while difference > difference threshold do:
5: Add the difference to the SEC signal.
6: Build and run the updated kriging model.
7: Use the updated kriging model to calculate the estimated SEC
signal.

8: Calculate the difference between the SEC signal and the kriging
model’s estimated strain.

9: end while
10: Build the final kriging model based on the adjusted SEC signal.
11: Run the final kriging model to develop improved additive
strain maps.

2.2. Kriging (gaussian process regression)

Kriging (or Gaussian process regression) is a statistical pro-
cess in which interpolated values are obtained from a spatially
dependent set of training data. As a general rule, kriging seeks
to predict the value of a function at the point of interest by
computing a spatially weighted average of the training points
in the neighborhood [42, 47]. The spatial variability of a
generalized spatially continuous process at a location x,
denoted as Z(x), can be represented as:

m= +( ) ( ) ( ) ( )x x xZ , 4

where μ(x) is the mean value of the process and ò(x) deals
with the small-scale spatial variation in the process. When
considering a noisy process, ò(x) is typically related to the
noise (i.e. error) term. In cases where the prediction mean μ

(x) varies smoothly, universal kriging (sometimes called kri-
ging with external drifts or regression kriging) is preferred
[48]. When considering external drifts and expressing n
observations (training points) as z(x1), z(x2), ¼, z(xn), the
value at a new, unsampled location x0 can be predicted as the
sum of the drift component (m̂) plus the residual ( ê):

= +ˆ ( ) ˆ ( ) ˆ ( ) ( )z x m x e x , 50 0 0

where the drift term m̂ is fit onto an assumed trend term using
linear regression. Various trend terms have been used to
model the large-scale spatial variations in the sample data and
these terms include linear, polynomial, and point logarithmic
[49]. This work uses a regional linear trend to estimate the
mean value at x0 [50]. The universal kriging predicted value
ˆ ( )z x0 can be solved for in a matrix notation as:

b l= +ˆ ( ) · ˆ · ( )z x q e, 60 0
T

0
T

where q0 is a vector of the predictors at x0, b̂ is a vector that
contains the estimated drift term coefficients, λ0 is a vector of
n kriging weights determined by the covariance function, and

e is a vector that contains all the regression residuals. The
unknown drift term coefficients, b̂, can be solved for using
the generalized least squares technique, formulated as:

b = - - -ˆ ( · · ) · · · ( )q C q q C z, 7T 1 1 T 1

where q is the matrix of the predictors at all observed loca-
tions, z is the sampled observations, and C is the covariance
matrix of residuals:

=
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The covariance between point pairs C(xi, xj), separated by
a distance d, in the covariance matrix are then estimated using
a variogram model. Different forms of variogram models
(variance functions) have been developed to model the spatial
correlation in the random space between point pairs. Exam-
ples of variogram models include the Gaussian, exponential,
spherical, linear and power models. For the purpose of this
work, the power model was selected due to its simplicity and
capability to estimate unbounded spatial variances [51]. The
power variogram model is expressed as +a·s d n, and used
to form the piecewise semivariance function γ(d):

g = =
+a{( ) · ( )d d

s d n d
0 0

0
, 9

where s is a scaling factor, α is the exponent (between 1 and
1.99), and n is the nugget term [50]. The nugget term
accounts for the ‘noise’ in the measurement as it represents
the random deviations from the otherwise smooth spatial data
trend. γ(d) is related with the covariance function for a point
wise pair as γ(d)=n−C(xi, xj). As represented in
equation (9), this work considers measurements that are
‘exact’, meaning that at the training points the variogram is
forced to be zero (i.e. the predicted values at the training
points will be equal to the observed values at these points).
Lastly, considering that the generalized least squares accounts
for the spatial correlation of residuals, equation (6) can be
expressed as:

b bl= + -ˆ ( ) · ˆ · ( · ˆ ) ( )z x q z q . 100 0
T

0
T

Given that various points of interest are sampled with suffi-
cient density, the universal kriging process outlined here can
create a near continuous interpolation of a sampled process.
More details about the kriging model can be found in [50].
This work utilized PyKrige, an open source kriging toolkit for
Python, for the development and solving of the universal
kriging interpolation models [52].

3. Strain map adjustment algorithm

The use of traditional interpolation methods (including kri-
ging and radial basis functions) for the estimation of full-field
strain maps for structures monitored by an SEC-based sensing
skin only considers the sensor location and signal. For these
interpolation methods, the signal of each SEC is deemed to be
located at the center of the sensor. The proposed strain map
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adjustment algorithm improves the accuracy of the full-field
strain maps by fusing the sensor geometry, along with the
sensor location and signal, into the strain maps.

The proposed algorithm maintains the assumption that
the signal of the SEC is located at the center of the SEC.
However, the additive strain measured by the sensor corre-
sponds to the average strain under the sensing area, and is
therefore not equal to the additive strain found at the center. It
should also be noted that the discrepancy between these two
values increases with either an increase in sensor size or an
increase in strain map complexity. The proposed strain map
adjustment algorithm is presented as a flowchart in figure 2,
described as a pseudocode in algorithm 1, and discussed it
what follows. First, a universial kriging model, denoted as
UK in the following equations, is trained using the SEC
sensor locations ISEC and their measured additive strain data
OSEC:

e = =( ) (( )∣ {( )}) ( )x y x y I O, UK , , , 11SEC SEC

where ε(x, y) is the additive strain at an arbitrary point (x, y).
The Gaussian process or kriging model for this arbitrary point
is denoted (( )∣ )x yUK , where  is the data set used for
training the model. Considering an SEC sensor location i, the
average strain value for the area monitored by the sensor,
written as Oi

SEC,estimated, is extracted from the 2D additive

strain field ε(x, y) such that:

å e=
=

( ) ( )
n

x yO
1

, , 12i
z

n

z z
SEC,estimated

1

where n is the number of strain points under the SEC sensor i
that are sampled from the kriging model. Next, the difference
between the measured strain for a sensor (Oi

SEC) and the strain
estimated by the kriging model at that location (Oi

SEC,estimated)
is given by:

x = - ( )O O . 13i i i
SEC SEC,estimated

Once ξi has been solved for, it is used to update the strain
value measured by the sensor (Oi

SEC) and create an adjusted
SEC signal value:

x= + ( )O O . 14i i i
SEC,adjusted SEC

Combining Oi
SEC,adjusted for all sensors in the sensing skin

yields the vector OSEC,adjusted. These adjusted strain values,
resulting from a fusion of SEC signals, locations, and geo-
metries, are used to train a new kriging model:

e = =( ) (( )∣ {( )}) ( )x y x y I O, UK , , 15SEC SEC,adjusted

and therefore, a new additive strain field ε(x, y). This process
of obtaining estimated SEC strain signals from the kriging-
estimated strain field, adjusting the SEC signals based on the
difference between the real and estimated signals, and resol-
ving the kriging-estimated strain field based on the adjusted
signals is repeated until a stop condition is met. In this work,
the stop condition requires every ξi to fall below 0.1 me.

A graphical representation of the strain map adjustment
algorithm for a simplified 1D case is presented in figure 3.
This 1D pseudo strain data was created to represent a rela-
tively complex strain topography that is monitored by five
SECs. The measurement of each SEC is the mean strain over
the area monitored by the SEC. The real strain distribution is
represented by the thin black line with the real strain value at
the center of the SEC denoted by the filled black circles. The
geometric transition from one SEC to another is denoted by
the dotted vertical line. The strain map adjustment algorithm
starts with the strain value measured by the ith SEC from the
real strain distribution to form the data point Oi

SEC. For the
purpose of this simplified 1D case, this measurement is
obtained without considering any noise in the signal and is
represented by the hollow black circle in figure 3. These strain
measurements can be observed to correctly estimate the strain
value at the center of the sensor for sensor locations that
monitor linear strain distributions (i.e. SECs 1, 4, and 5) while
either overestimating or underestimating the strain value for
locations that monitor more complex strain distributions (i.e.
SECs 2 and 4). Once the SEC measurements have been
obtained, a kriging model is generated that uses the SEC-
measured strain as the input for the model, this model is than
densely sampled over the entire distance to create a near
continuous strain distribution as represented by the dashed
blue line. Note that the model goes through the data points
used in training the model and as such this initially estimated
strain distribution can be observed to overestimate the strain

Figure 2. Flowchart detailing the strain map adjustment algorithm.
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at SEC 2 and underestimate the strain at SEC 3. Now the
estimated SEC signal (Oi

SEC,estimated) is obtained from the
densely sampled initial kriging model, and for i=3 (SEC 3),
this value is shown as a blue x in the inset of figure 3. Next
the difference between Oi

SEC and Oi
SEC,estimated can be calcu-

lated from equation (13) and used to adjust the SEC signal
used in training the adjusted kriging model (or the next
adjusted SEC signal in the case of additional iterations) as
denoted in equation (14). This newly adjusted SEC signal is
represented by an orange filled circle in the inset of figure 3
and is termed the 1st adjusted SEC signal. This process is
repeated until the adjusted SEC signal converges to the
measured SEC signal. These adjusted SEC signals, which are
closer to the real strain values at the center of the SEC, can
then be used to generate kriging models that better reproduce
the shape of the strain topology over the entire area of
interest. For this example, only two iterations are required to
generate a kriging model that shows a marked improvement
over the original kriging-estimated strain topography as
shown by the dotted green line in figure 3.

4. Methodology

This section starts by introducing the experimental test setup
that forms the basis for both the numerical validation and
experimental verification performed in this work. After, a
brief noise quantification study is performed on an SEC from
the experimental setup to provide realistic noise character-
istics for the numerical study. Lastly, the numerical and
experimental studies are presented.

4.1. Experimental setup

The strain map adjustment algorithm presented in this work is
numerically validated and experimentally verified using the
configuration shown in figure 4. The numerical investigation
is conducted on an FEA model of the plate for a variety of
sensor layouts. The experimental test setup consists of a
fiberglass plate with a geometry of 500×900×2.6 mm3.
The plate is driven by a stepper motor mounted under the
plate and connected to the plate through a series of
mechanical linkages. The left-hand side of the plate is bolted
to an aluminum support (12.7×76.2×500 mm3). This
bolted connection forms a rigid connection that was added to
eliminate strain complexities from a direct connection of the
hinge to the fiberglass plate. This rigid connection is attached
to the frame through a pinned connection. The right-hand side
of the plate is restrained in the vertical direction by a roller.

Figure 3.Graphical representation of the first three iterations of the strain map adjustment algorithm for a 1D pseudo strain data monitored by
5 SECs with the inset showing a closeup of SEC 3.

Figure 4. Experimental setup used as the basis for the numerical
validation and for generating experimental data used in this work.
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This roller consists of two lightly greased rods of diameter
12.7 mm mounted on both the top and bottom of the plate.
This experimental setup was previously used in a study
related to developing uni-directional strain maps from the
SEC-based sensing skin [35].

4.2. SEC noise quantification

A noise signature is extracted from the experimental test setup
for the SEC sensor just to the left of the loading point in
figure 4 for the purpose of evaluating the robustness of the
strain map adjustment algorithm with respect to noise. The
SEC was selected at this location as it experienced a relatively

high level of strain during dynamic testing and the length of
the cable connecting the SEC sensor to the DAQ is of average
length. Figure 5 presents the data for the single sensor under a
dynamic (figure 5(a)) and static (figure 5(b)) load case. The
experimental data for the static load case, sampled at 17
samples per second, was found to have a standard deviation
of σ = 32 me. The red line in figure 5(b) is the best-fit linear
regression of the data over the 60 s test. In total, the data was
found to drift 4.12 me with r-and p-values of -0.056 and 0.048
respectively. The capability of a normal distribution to
effectively estimate the SEC signal noise is demonstrated by
the q–q plot presented in figure 5(c). Therefore, a noise with a
normal distribution and a standard deviation of σ=32 me is
deemed appropriate for conducting simulations of the strain
map adjustment algorithm with respect to noise.

4.3. Numerical validation

Numerical validation of the strain map adjustment algorithm
is performed using 10 load cases of varying complexities
applied to an Abaqus FEA model of the experimental test
setup [53]. The FEA model was designed to replicate the
experimental test setup. In addition to modeling the fiberglass
plate, the FEA model also considers the rigid aluminum
connection on the left-hand side of the plate. The model is
constructed of 298 065 linear brick elements, each with eight-
nodes and one integration point. This model configuration
was found to have an error of less than 1% when compared to
a densely meshed (1.2 million elements) version of the same
FEA model. In the fiberglass plate, nine elements are used
through its thickness to prevent shear locking. The plate’s
connection, pinned on the left-hand side and a roller on the
right-hand side, were modeled as ideal connections. The
material properties of the fiberglass were obtained experi-
mentally while the properties of the aluminum were taken
from the material’s data sheet supplied by the distributor. The
key parameters of the FEA model are listed in table 1.

The 10 loading cases are presented using figure 6 and
table 2 where figure 6 details the locations of the seven
loading location identifiers (A–F) consisting of four loading

Figure 5. Experimental data for a sensor on the experimental test
setup used showing: (a) dynamic response for a sinusoidal input
load; (b) static response for a constant load; and (c) q–q plot of the
static load compared to a normal distribution.

Table 1. Parameters used in constructing the FEA model.

Parameter Value

Elements total 298 065
Elements type linear brick
Abaqus element type C3D8R
Elements (aluminum connection) 32 340
Elements (fiberglass plate) 265 725
Element nodes 8
Element integration points 1
Young’s Modulus (aluminum) 68.9 GPa
Young’s Modulus (fiberglass) 15 GPa
Poisson’s ratio (aluminum) 0.33
Poisson’s ratio (fiberglass) 0.21
Density (aluminum) 2700 kg m−3

Density (fiberglass) 2100 kg m−3

Plate dimensions 500×900×3.18 mm3
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points (A–D) and three uniform loading conditions (E–G).
Table 2 lists the displacement for each of the identifiers for
the 10 load cases considered. In the case that a specific
location is unused for a load case, its correlating position in
table 2 is left empty. A displacement of zero denotes a loading
point that is fixed at 0 mm of displacement. The strain maps
produced for these 10 load cases are shown in figure 7. These
load cases were selected to develop strain maps that produced
varying amounts of asymmetry and strain map complexity.
For each load case, the strain maps are normalized to either
their maximum compressive or tensile strain values to help
the visualization of results such that the no strain condition is
the same color for each plot. The values associated with the
maximum compressive and tensile strain for the load cases
are listed in table 3.

The numerical validation also investigated the effect of
changing sensor densities on the accuracy of both the tradi-
tional kriging and adjusted kriging strain maps. To do this, an
algorithm was formulated that covered the monitored area of
the fiberglass plate with an evenly spaced grid of square SEC
sensors. This algorithm started with six sensors and pro-
gressively added square sensors to the fiberglass plate by
reducing the size of each individual sensor. Every combina-
tion of square sensors arranged in a rectangular grid formed
from six to 500 sensors was considered, with a total of 39

different grid configurations considered. Figure 8 shows the
SEC sensor layouts for three different sensor densities. As the
strain map adjustment algorithm seeks to only update the
strain value at the center of each SEC, the spaces between the
SECs do not have a direct effect on the strain map inter-
polations. However, this unmonitored area does have a sec-
ondary effect on the performance of the algorithm as an area
that is not monitored by a sensor will not be fused into the
adjusted additive strain map. For uniformity, this work con-
siders only SEC sensors of a square geometry. The invest-
igation of other dense sensor network configurations,
including those with non-uniform sensor densities, geome-
tries, and sizes, are beyond the scope of this intro-
ductory work.

4.4. Experimental verification

The experimental verification for the strain map adjustment
algorithm was performed using a network of 40 SECs
deployed as a grid onto the fiberglass plate. The layout of
these SECs is presented in figure 9. In addition to the 40
SECs, 20 RSGs were deployed onto the fiberglass plate for
the purpose of validating the strain map adjustment algorithm
at various locations on the plate. The RSGs (model #FCA-5-
350-11-3LJBT, manufactured by Tokyo Sokki Kenkyujo)
were deployed in pairs, each individually measuring εx and εy.
The 40 SECs were deployed in a 5×8 grid array, each
monitoring an area of 38×38 mm2. The DAQ system con-
sists of 10 custom-built capacitance measurement devices
(annotated as SEC DAQ in figure 4) that also generate an
active shield for the cable that removes the parasitic capaci-
tance found in the cable. In addition to these devices, a
chassis (cDAQ-9178, manufactured by National Instruments)
was used to hold three quarter bridge analog input (NI-9236)
modules for measuring the RSGs, an analog input module
(NI-9205) for measuring the LVDT, and a digital output
module (NI-9472) for sourcing a trigger to ensure the SEC
and RSG data is sampled simultaneously. Additionally, an
LVDT (model #0244, manufactured by Trans-Tek) was
mounted to the plate to record the plates center displacement.
All the data sources were measured at 17 samples per second.
Lastly, to remove the high-frequency noise found in the SEC
signal, a fifth-order Butterworth filter with a cutoff frequency
of 10 Hz was used. The effects of this filtering can be seen in
figure 5(a). No filtering was needed for either the RSG or
LVDT data.

The experimental validation considered two experimental
load cases. First, load case 1 (similar to load case 1 in the
numerical investigation) is used to verify the strain map
adjustment algorithm for a relatively simple load case. This
load case is produced at the center of the plate by the stepper
motor located under the plate. The plate is displaced 5 mm
from its initial condition harmonically at 0.25 Hz. Second, an
asymmetric load is generated to verify the strain map
adjustment algorithm under a more complex loading condi-
tion. To generate this asymmetric load, a 0.5 kg mass is added
at the center of the plate along its top edge (see figure 9) then
the plate is excited using the stepper motor in the same

Figure 6. Schematic representation of the experimental plate with the
identifiers (A–F) used for annotating the loading points for the ten
load cases presented in table 2.

Table 2. Displacements associated with the identifiers (A–F) from
figure 6 for the 10 loading conditions considered for this study.

Displacement (mm)

A B C D E F G

Load case 1 5
Load case 2 5
Load case 3 0 5
Load case 4 5
Load case 5 5 0
Load case 6 5
Load case 7 5
Load case 8 5
Load case 9 5 5
Load case 10 5 0 5
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manner as load case 1. For both cases, the experimental data
is investigated over two complete cycles.

5. Results

This section presents the results from both the numerical and
experimental studies. First, a detailed evaluation of the strain
map adjustment algorithm for load case 4 is presented, fol-
lowed by a discussion on the results for all ten load cases.
Lastly, the experimental results are discussed.

5.1. Numerical validation

Results for the strain map adjustment algorithm for load case
4, monitored with 28 SECs as shown in figure 8(b), are
presented in figure 10. The combination of load case 4 with
28 SECs was selected due to its capability to demonstrate
both portions of the strain field where the strain map adjust-
ment algorithm improves the accuracy of the strain map (i.e.
near the load case) and portions where its benefit is less
obvious (i.e. portions the strain topography that are relatively
simple). To expand, figure 10 presents both the plate’s real
strain map and its kriging-estimated strain maps using the

traditional kriging method (figure 10(a)) and the strain map
adjustment algorithm (figure 10(b)). Figure 10(c) reports the
RMSE error between the real strain map and that estimated
using the strain map adjustment algorithm over each succes-
sive iteration of the algorithm. In figure 10(c) the initial
condition is the strain map generated using a traditional kri-
ging method (figure 10(a)) and therefore does not incorporate
the sensor geometry into the strain map interpolation. Con-
versely, the strain map for iteration 16 (figure 10(b)) incor-
porates the sensor geometry into the reconstructed strain
maps. The inset in figure 10(c) shows the reduction in strain
map reconstruction error (measured as me) by the strain map
adjustment algorithm (figure 10(b)) over the traditional kri-
ging method (figure 10(a)). The strain map adjustment algo-
rithm generates a considerable improvement near the loading
point at the top center of the plate where the traditional kri-
ging method underestimates the real strain value. Further-
more, the algorithm generally improves the accuracy of the
strain map over the entire plate.

Figure 11 reports the results for the ten cases used in the
numerical validation in terms of the root mean squared error
(RMSE) where the error is measured at every point of the
strain map. Results are reported for the RMSE from both the
traditional kriging method and for the strain map adjustment
algorithm. These results are reported with and without noise
added to the system. Overall, the strain maps developed using
the strain map adjustment algorithm have less error than those
developed using the traditional method. A few notable results
for some specific load cases are as follows. First, it should be
noted that in every load case considered for the no-noise
conditions the adjusted strain maps are capable of achieving a
level of error that would require far more sensors than if the
strain map adjustment algorithm was not used. When noise
was added to the sensor signal and for loading conditions that
developed low levels of strain (e.g. load cases 1, 4, and 7), the
benefit of using the strain map adjustment algorithm for a
given number of SECs was reduced but never worse than the
traditional kriging method’s error levels. Next, it can be
noticed that load cases 4 and 5 experience an increase in error
for an increase in the number of sensors deployed in the dense

Figure 7. Additive strain maps, generated by the FEA model, for the ten load cases used in the numerical analysis portion of this work.
Numerical values for the maximum compressive and tensile strains are listed in table 3.

Table 3. Values associated with the maximum compressive and
tensile strain for the load cases presented in figure 7.

Maximum compressive Maximum tensile
strain (me) strain (me)

Load case 1 −1572 1572
Load case 2 −1938 1938
Load case 3 −7160 7160
Load case 4 −1135 1135
Load case 5 −1965 1965
Load case 6 −1043 1043
Load case 7 −907 907
Load case 8 −1266 1266
Load case 9 −1239 1239
Load case 10 −6797 6797
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sensor network before leveling out once a certain number of
sensors are used. This increase in RMSE for load cases 4 and
5 come from the very center of the plate where the kriging
method underestimates the peak strain value due to sensors

Figure 9. SEC and RSG layout of the experimental test setup used
for experimental validation.

Figure 10. Strain maps generated for load case 4: (a) using the
traditional kriging method; (b) using the strain map adjustment
algorithm; and (c) showing the RMSE as a function of number of
iterations for the strain map adjustment algorithm where the inset
shows the improvement in strain between the traditional kriging
method and the proposed algorithm.

Figure 8. SEC-based sensing skin layouts with: (a) six SECs; (b) 28
SECs; and (c) 45 SECs.
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Figure 11. RMSE results for both the traditional kriging and the adjusted kriging methods for all ten load cases, considered both with and
without noise.
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being positioned right on top of this high strain concentration.
However, in both of these cases, the strain map adjustment
algorithm is capable of compensating for this concentrated
strain location.

5.2. Experimental verification

The experimental results for the 40 sensors deployed on the
experimental test setup are presented in figure 12. The strain
maps in figure 12(a) report the full-field strain maps devel-
oped using the strain map adjustment algorithms for both load
cases. For the experimental study the RMSE is measured at
the 20 RSG locations on the plate. The RSGs are used for this
task due to their higher accuracy when compared to the SECs,
and capability to measure the additive strain at any location
when their signals are added together. As expected, the
RMSE for both load cases generally increases when the dis-
placement is increasing and is near either its maximum

upward or maximum downward displacement. Load case 1
(figure 12(b)) does report lower error values than load case 2
(figure 12(c)). This increase in the error for load case 2 is to
be expected given the general increase in the complexity of
the strain topography for load case 2, as seen in figure 12(a).
Additionally, for two brief moments in load case 2 around 3.4
and 7.4 s, the adjusted strain map reports a higher level of
error than those generated using the traditional kriging
methods. This can be attributed to the relatively small number
of RSG gauges used for quantifying the error of the full-field
strain maps.

6. Conclusion

This work proposed an algorithm that fuses the locations of
strain sensors, their signals, and the geometry of a network of

Figure 12. Temporal RMSE results for the 0.25 Hz loading condition under the experimental: (a) load case 1; and (b) load case 2. A video
form of this figure is available as a supplementary material for this article at [stacks.iop.org/sms/27/075033/mmedia]
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sensors constituting a sensing skin into an approximated full-
field strain map. These sensors, termed SECs, are a large-area
electronic that are capable of covering large areas at low costs.
Given that each SEC measures the summation of a structure’s
orthogonal strains (i.e. εx+εy), the SECs deployed in a network
configuration are capable of reproducing the full-field additive
strain map of a structure. These full-field strain maps can then be
used to extract physics-based features for real-time condition
assessment. Examples of the physics-based features include
changes in strain maps and deflection shapes.

The proposed algorithm improves the quality of these full-
field strain maps by fusing the sensor size into a traditional strain
field interpolation that only uses the sensor location and signal.
This work used kriging as the interpolation method. However,
other interpolation methods including cubic splines and radial
bias functions could also be used. The improvement in the
additive full-field strain map generation is accomplished through
iterative adjustments to the measured SEC signal used as the
input to the kriging model until the measured SEC signal mat-
ches the SEC signal estimated using the kriging model. There-
fore, the newly proposed algorithm fuses data from the SEC’s
location, signal, and geometry to produce a full-field strain map.
Results from numerical and experimental investigations show
that the proposed strain map adjustment algorithm is capable of
generating improved full-field strain maps over those produced
using the traditional kriging method.
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